INDIAN SCHOOL MUSCAT
FINAL EXAMINATION
FEBRUARY 2021

CLASS XII
 Marking Scheme - PHYSICS [THEORY]

Q.NO.	Answers SECTION-A	Marks (with split up)
1.	Magnetic dipole moment	1
2.	$\mathrm{v}=\mathrm{E}_{0} / \mathrm{B}_{0}$ OR Gamma rays, Gamma rays are used in destroying cancer cells	1
3.	$\begin{aligned} & \mathrm{f}=\mathrm{Bq} / 2 \pi \mathrm{~m} \\ & \mathrm{f} \alpha 1 / \mathrm{m} \\ & \mathrm{f}_{\mathrm{e}}>\mathrm{f}_{\mathrm{p}} \text { so electron has more frequency } \end{aligned}$	1
4.	Definition of self-inductance and SI unit OR Any two losses	1/2, 1/2
5.	$\mathrm{R}=\mathrm{R}_{0} \mathrm{~A}^{1 / 3}$	1
6.	$\mathrm{KE}=1.6 \times 10^{-19} \times 1.5=2.4 \times 10^{-19} \mathrm{~J}$	1
7.	Definition of isotopes One example of isotopes OR Two properties of nuclear force	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \\ & 1 / 21 / 2 \end{aligned}$
8.	Solar cell OR 100 Hz	1
9.	Reverse biased	1
10.	GaP or GaAs. They emit the maximum amount of energy in the form light	1
11.	b	1
12.	b	1

13.	d	1
14.	d	1
	SECTION-B	
15.	(1) a (2) b (3) b (4) b (5) b	$\begin{aligned} & 4 \times 1 \\ & \text { mark } \end{aligned}$
16.	(1) $\mathrm{b} \quad$ (2) c (3) c (4) a (5) b	$\begin{aligned} & 4 \times 1 \\ & \text { mark } \end{aligned}$
	SECTION-C	
17.	$\begin{aligned} & \left.\mathrm{F} / \mathrm{l}=\mu_{0} / 2 \pi\left(\mathrm{I}_{1} \mathrm{I}_{2}\right) / \mathrm{r}\right) \\ & \mathrm{F} / \mathrm{l}=2 \times 10^{-4} \mathrm{~N} / \mathrm{m} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
18.	Two independent sources cannot be maintained constant phase difference OR When the slit width is doubled, the width of central band will be halved. Intensity α Area of aperture Intensity of the central band will be doubled	2 1 1
19.	Derivation of $\mathrm{U}=1 / 2 \mathrm{CV}^{2}$ Diagram derivation $\mathrm{U}=1 / 2 \mathrm{CV}^{2}$ Energy stored in first capacitor $\mathrm{U}=12 \mu \mathrm{~J}$ Total charge $\mathrm{Q}=12 \times 10^{-8} \mathrm{C}$ Total capacitance after connection in parallel $\mathrm{C}=900 \times 10^{-12} \mathrm{~F}$ Common Potential V 400/3 V Total energy after connection $\mathrm{U}^{\prime}=8 \mu \mathrm{~J}$ Energy loss $=12-8=4 \mu \mathrm{~J}$	$1 / 2$ $11 / 2$ $1 / 2$ 1 $1 / 2$
20.	Energy of incident photon $\mathrm{E}=\mathrm{hc} / \lambda \mathrm{e}=2.07 \mathrm{eV}$ For detection energy of light should be greater than forbidden energy gap D_{2} will detect the light	
21.	Statement of Lenz's law and Explanation	1/2, $1^{1 / 2}$
22.	Verification of laws of reflection by Huygen's principle Diagram Verification	$\begin{aligned} & 1 / 2 \\ & 1^{1 / 2} \end{aligned}$
23.	Energy band diagrams of a \mathbf{n}-type and a \mathbf{p}-type semiconductor at temperature $\mathbf{T}>\mathbf{0 K}$. Marking the donor and acceptor energy levels with their energies.	1 1

24.	(i) Name the three elements of the Earth's magnetic field. (ii)At Equator OR Given: $B_{H}=0.4 \mathrm{G}$ or $B_{E} \cos 60^{\circ}=0.4 \mathrm{G}$ $\begin{aligned} B_{E} & =\frac{0.4}{\cos 60^{\circ}} \quad\left(\because \cos 60^{\circ}=\frac{1}{2}\right) \\ & =0.4 \times 2=0.8 \mathrm{G} \end{aligned}$	$\begin{aligned} & 11 / 2 \\ & 1 / 2 \\ & 2 \end{aligned}$
25.	(a) Two necessary conditions for the phenomena of total internal reflection to occur. (b) $\mathrm{n}=1 / \sin \mathrm{C}$	1 1
	SECTION-D	
26.	Statement of mutual inductance Consider the two co-axial circular coils (C_{1} and C_{2}) of radii r_{1} and r_{2} placed coaxially as shown in the figure ($r_{1} \ll r_{2}$). Let current I be passed through the outer coil. It will produce the magnetic field B on the coil of radius r_{1}. This magnetic field is given by $B=\frac{\mu_{0} I}{2 r_{2}}$ The magnetic flux associated with the inner coil of radius r_{1} will increase to $\begin{aligned} \phi_{1} & =B \times \text { area of the inner coil } \\ \phi_{1} & =\frac{\mu_{0} I}{2 r_{2}} \times \pi r_{1}^{2} \\ \phi_{1} & =\frac{\mu_{0} \pi r_{1}^{2}}{2 r_{2}} I \\ M & =\frac{\phi_{1}}{I}=\frac{\mu_{0} \pi r_{1}^{2}}{2 r_{2}} \end{aligned}$	1 2
27.	For point A , when $\mathrm{I}=0 \quad \therefore V_{A}=E$ $\quad \mathrm{E}=\mathrm{y}$ - intercept For point B, \quad when $\mathrm{V}=0$ Hence $r=\frac{E}{I_{B}} \mathrm{r}=$ negative slope of V - I graph	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$

	Solution. (i)Forchäging, the positive terminal of the DC source is connected to the positive terminal of the battery. Therefore, during charging, the effective emf driving the (charging) current in the circuit is $E^{\prime}=120 V=8.0 V=112 V$ The series resistor is $R=15.5 \Omega$ if, be the internal resistance of the battery, the charging current is $i=\frac{E}{R+r}=\frac{112 V}{(15.5+0.5) \Omega}=7.0 \mathrm{~A} .$ (ii)The terminal voltage across the battery of emf E during charging is $V=E+i r=8.0 V+(7.0 \mathrm{~A})(5.0 \Omega)=11.5 \mathrm{~V}$. 5 minutes is (iii) The chemical energy stored in the battery in $=\text { EIt }=\left(8.0 \mathrm{~V} \times 7.0 \mathrm{~A} \times(5 \times 60 \mathrm{~s})=1.68 \times 10^{-4} \mathrm{~J}\right.$ The series resistor 15Ω control the current drawn from external DC source. In absence of 15Ω current in circuit will be very large $I=112 / 0.5=224 \mathrm{~A}$	$1 / 2$ 1 1 1 $1 / 2$
28.	Derivation of Einstein's photoelectric equation. Any two features of photoelectric effect which cannot be explained by wave theory. OR Statement of de-Broglie hypothesis. $\begin{array}{rlrl} \because & \lambda_{\alpha} & =\frac{h}{\sqrt{2 m_{\alpha} q_{\alpha} V}} \\ \text { and } & \lambda_{p} & =\frac{h}{\sqrt{2 m_{p} q_{p} V}} \\ \because & m_{\alpha} & =4 m_{p} \\ q_{\alpha} & =4 q_{p} \\ q_{p} & =e \\ q_{\alpha} & =4 e \\ \frac{\lambda_{\alpha}}{\lambda_{p}} & =\sqrt{\frac{m_{p} \cdot e}{4 m_{p} \cdot 2 e}}=\frac{1}{2 \sqrt{2}} & \end{array}$	$\begin{aligned} & \hline 2 \\ & 1 / 2.1 / 2 \\ & 1 \\ & 2 \end{aligned}$
29.	Derivation for the total energy of the electron in the stationary states of the hydrogen atom. KE expression PE expression Total energy expression after the substation of value of radius of orbit	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$
30.	(a)Distinguish between nuclear fission and fusion. explanation how in both these processes energy is released. (b) Calculate the energy release in MeV in the deuterium-tritium fusion reaction:	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \end{aligned}$

	The energy released in the given reaction, or $\begin{aligned} Q & =\left[m\left({ }_{1}^{2} \mathrm{H}\right)+m\left({ }_{1}^{3} \mathrm{H}\right)-\left\{m\left({ }_{2}^{4} \mathrm{He}\right)+m(n)\right] u\right. \\ Q & =[2.014102+3.016049-\{4.002603+1.008665\}] u \\ & =0.018883 \times 931.5 \mathrm{MeV} \\ & =17.59 \mathrm{MeV} \end{aligned}$	2
	SECTION-E	
31.	(a)Statement of Gauss's law in electrostatics. Explanation of the outward electric flux due to a point charge $+q$ placed at the centre of a cube of side a. Why is it found to be independent of the size and shape of the surface enclosing it? (b) Calculate the electric field intensity (i) in the outer region of the plates, and (ii) in the interior region between the plates. Diagram Derivation of electric field OR (a) Derivation an expression for the electric \mathbf{E} due to a dipole of length ' $\mathbf{2 a}$ ' at a point distant \mathbf{r} from the centre of the dipole on the axial line. Diagram Derivation (b) graph of \mathbf{E} versus \mathbf{r} for $\mathbf{r} \gg \mathbf{a}$. (c) If this dipole were kept in a uniform external electric field \mathbf{E}_{0}, diagrammatically represent the position of the dipole in stable and unstable equilibrium and write the expressions for the torque acting on the dipole in both the cases.	$1 / 2$ $11 / 2$ 1 2 $1 / 2$ $11 / 2$ 1 $1+1$
32.	(a) Ray diagram to show refraction of ray of monochromatic light passing through a glass prism. Derivation the expression for the refractive index of glass in terms of angle of prism and angle of minimum deviation. (b) Ray diagram showing the formation of image by a reflecting type telescope. OR (a) Derivation a mathematical expression for the width of interference fringes obtained in Young's double slit experiment with the help of a suitable diagram. Diagram Derivation (b) Any two characteristic features which distinguish between interference and diffraction phenomena.	$\begin{aligned} & 1 \\ & 2 \end{aligned}$ 2 1 2 2

33. (a) \because Current leads the voltage by a phase angle of $\pi / 2$, therefore device \times is a capacitor.

$$
\text { Reactance } X_{C}=\frac{1}{\omega C}=\frac{1}{2 \pi \vee C}
$$

Here, $v=$ Frequency, $C=$ Capacitance
(b) Graphs of V and I with time.

(c) Reactance of a capacitor is inversely proportional to the frequency of a.c., i.e. $X_{C} \propto \frac{1}{v}$

(d) Phasor diagram for X (Capacitor)

(a) Principle of ac generator
(b) Labelled diagram and working ac generator
(c) The coil of an ac generator having \mathbf{N} turns, each of area \mathbf{A}, is rotated with constant angular velocity $\boldsymbol{\omega}$.

Derivation of the expression for the alternating emf generated in the coil.

